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Abstract:

In this study, regional climates of Iran were identified based on the properties of the monthly rainfall time series models
of 28 main cities of Iran. The autocorrelation (ACF) and partial autocorrelation (PACF) of selected series revealed the
seasonal behavior of the monthly rainfall. After the parameters of the models were estimated and the residuals of the models
analysed to be time independent and the normality was checked using Portmanteau lack of fit and nonparametric tests, the
multiplicative ARIMA model was fitted to monthly rainfall time series of the stations. To determine regional climates, a
hierarchical cluster analysis was applied on autocorrelation coefficients at different lags and three main climatic groups
were found based on the time series models, namely, simple, moderate and complex climates. The results of the time
series modeling showed a high variation of the temporal pattern of the monthly rainfall over Iran except for the margins
of the Caspian Sea and the Persian Gulf. The study also shows that the correlation between the seasonal autocorrelation
coefficient of the rainfall time series and the rainfall coefficient of variation and elevation of the stations is significant while
lag-one autocorrelation coefficient does not correlate to rainfall coefficient of variation and the elevation of the stations.
Different models also imply the high variation in the spatial rainfall producing mechanism and different stationarity and
periodicity characteristics of the rainfall temporal pattern over Iran. A nomenclature of the abbreviation is given at the end
of the paper. Copyright  2006 Royal Meteorological Society
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INTRODUCTION

Hydrologists have always tried to classify atmospheric
and hydrologic events in order to simplify the hydro-
logic convolutions and the observations or to save the
time and the budget. Most of these methods are used for
the regionalization of hydrologic phenomena like rain-
fall, streamflow and other components of water cycle.
Multivariate techniques have been underlined as suitable
and powerful tools for classifying the meteorological data
such as rainfall. Principal components, factor analysis
and different cluster techniques have been used to clas-
sify daily rainfall patterns and their relationship to the
atmospheric circulation (Romero et al., 1999); to classify
flood and drought years (Singh, 1999); to classify stream-
flow drought (Stahl and Demuth, 1999); to classify lake
annual fluctuations (Sen et al., 1999); to classify stream-
flow regimes (Sanz and del Jalon, 2005; Harris et al.,
2000); water quality of the lakes (Kitpati et al., 2005) and
to classify storm events (Palecki et al., 2005). Acerman
(1985) and Acerman and Sinclair (1986) concluded that
the cluster analysis has some intrinsic worth to explain
the observed variation in data. Gottschalk (1985) applied

* Correspondence to: R. Modarres, Faculty of Natural resources, Isfa-
han University of Technology, Iran. E-mail: r m5005@yahoo.com

cluster and principal component analysis (PCA) to the
territory of Sweden and concluded that cluster analysis
is an appropriate method to use on a national scale with
heterogeneous hydrological regimes.

On the other hand, time series modeling is a major
tool in planning, operating and decision making of water
resources and investigating climatic fluctuations and has
been commonly used for data generation, forecasting,
estimating missing data and extending hydrologic data
records (Delleur et al., 1976; Salas, 1993; Hipel and
McLeod, 1994). To accomplish these objectives, hydrol-
ogists and meteorologists have to construct stochastic
models and the modeler has to decide on choosing the
type of the model whether it is univariate or multi-
variate. These model types are generally based on the
annual time series with homogenous mean and vari-
ance or on the seasonal series generally with peri-
odic parameters (Salas and Obeysekera, 1982a, among
others).

Autoregressive integrated moving average (ARIMA)
model is the most widely used time series model in
hydrologic and climatic time series modeling. Salas
et al. (1980) reviewed all these models and described
their characteristics. Hipel and McLeod (1994) also
presented the ARIMA family among the other models
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such as broken line, fractional ARMA model (FARMA),
fractional Gaussian noise (FGN) and others.

After choosing the model, the modeler should estimate
its parameters and then apply diagnostic checking of
the selected model. These three modeling steps were
completely described by Box and Jenkins (1976) and
have been applied, developed and improved by many
hydrologists (e.g. Delleur et al., 1976; Hipel et al., 1977;
McLeod et al., 1977; Salas and Smith, 1982b; Srinivas
et al., 1982; Salas and Fernandez, 1993; Banalya et al.,
1998; Elek and Markus, 2004; Kallache et al., 2005;
Carslaw, 2005).

In recent years, classification and time series cluster
analysis has become an important area of research in
several fields, such as economics, marketing, business,
and many other fields (e.g. Piccolo, 1990; Maharaj,
1999, 2000; Xiong and Yeung, 2004). However, time
series models have not been used for classification
meteorological variables yet.

The primary objectives of this study are twofold: first,
to find the best time series models for monthly rainfall of
the selected stations and second, to classify these stations
based on the characteristics of the time series models
using cluster analysis. The results of this study can show
the temporal behavior of rainfall over Iran.

This paper has the following sections. In the section
‘Methodology’, the climate data and the methods which
are used for time series modeling and cluster analysis
are discussed. In the Section ‘Results and Discussion’,
the time series models fitted to the monthly rainfall of
the selected stations are presented. Then we describe the
results of cluster analysis for the classification of the
temporal characteristics of these models. In the last part
of this section, the relationships between these climate
groups and time series characteristics are discussed. A

brief conclusion is then given based on the new look
of this study at the use of time series modeling for the
rainfall classification.

METHODOLOGY

Climate data

For this study, monthly rainfall time series for 28 major
cities of Iran are selected. These stations have the only
available long-term rainfall data. The selected series
contain 30 year (360 month) rainfall data from 1970
to 2000, except for Ardabil station (rainfall data for
1980–2000), Hamedan (rainfall data for 1977–2000),
Yasuj, Ghom and Ilam (rainfall data for 1987–2000).
The spatial location of the selected stations is presented
in Figure 1. The mean monthly rainfall distribution of
the selected stations is also presented in Figure 2. Table I
shows the annual rainfall and geographical characteristics
of these stations.

ARIMA models

In this section, we will explain the general form of
ARIMA models. The Box–Jenkins model has two
general forms:, ARIMA (p,d,q) and the multiplicative
ARIMA (p,d,q) × (P,D,Q) in which p and q are non-
seasonal autoregressive and moving average parameters,
P and Q are the seasonal autoregressive and moving aver-
age parameters, respectively. The two other parameters,
d and D, are required nonseasonal and seasonal differ-
encing respectively, used to make the series stationary.
The form of ARIMA (p,d,q) is written as,

φ(B)(1 − B)dZt = θ(B)εt (1)
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Figure 1. Spatial location of selected rainfall stations.
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Figure 2. Mean monthly rainfall distribution of the selected stations.

and multiplicative ARIMA(p,d,q) × (P,D,Q) has the
following form,

φp(B)�P (BS)∇d∇D
S Zt = θq(B)�Q(BS)εt (2)

See the nomenclature at the end of the paper for more
details. For rainfall time series modeling in this study,

we have to find the best model for monthly rainfall
time series and to estimate the significant time series
parameters for the models.

Time series modeling

Time series modeling includes three steps of model
identification, model estimation and diagnostic checking
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Figure 2. (Continued).

(goodness of fit test). In the first step, the initial mod-
els which seem to represent the behavior of the time
series and are worthy for the further investigation and
parameter estimation are identified following the guide-
lines presented by Box and Jenkins (1976), applied
by Hipel et al. (1977); McLeod et al. (1977); Rao
et al. (1982) and described by Bowerman and O’Connel
(1993). These guidelines are based on the behavior of the

autocorrelation (ACF) and partial autocorrelation func-
tions (PACF).

After model identification, the modeler needs to obtain
an efficient estimation of the parameters. The model
parameters should satisfy two conditions, namely, sta-
tionarity and invertibility for the autoregressive and the
moving average parameters, respectively. The parameters
should also be tested as to whether they are statistically
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Table I. Selected stations with geographical location and annual rainfall characteristics.

Stations Mean annual
rainfall (mm)

STDEV (mm) CV Latitude Longitude Elevation (m)

Ahwaz 213.3 86.3 0.40 31°20′ 48°40′ 22
Arak 345 92.8 0.27 34°06′ 49°46′ 1708
Ardabil 309 88 0.28 38°15′ 48°17′ 1332
Bandar Abbas 192 121.8 0.63 27°13′ 56°22′ 10
Bushehr 275.6 118.8 0.43 28°59′ 50°50′ 19
Ghaemshahr 752.3 116.7 0.16 36°27′ 52°46′ 14
Gorgan 612.1 102.8 0.17 36°51′ 54°16′ 13
Ghazvin 315.9 89.5 0.28 36°15′ 50°03′ 1279
Hamedan 316.2 76.6 0.24 35°12′ 48°43′ 1679
Isfahan 121.4 40.1 0.33 32°37′ 51°40′ 1550
Ilam 627.9 170.7 0.27 33°38′ 46°26′ 1337
Oroomieh 349.3 98.4 0.28 37°32′ 45°05′ 1315
Ghom 149 47.1 0.32 34°42′ 50°51′ 877
Zahedn 94.8 40.1 0.42 29°28 48°40′ 1370
Zanjan 317.6 72.6 0.23 36°41′ 48°29′ 1663
Yazd 62.1 27.9 0.45 31°54 54°17′ 1237
Yasuj 822.9 183.02 0.22 30°50′ 51°41′ 1831
Tehran 229.2 63.92 0.28 35°41′ 51°19′ 1190
Tabriz 293.3 68 0.23 38°05′ 46°17′ 1361
Shiraz 344.7 99.7 0.29 29°32′ 52°36′ 1481
Shahrecord 319 86.6 0.27 32°17′ 50°51′ 2048
Semnan 139.9 54.2 0.39 35°35′ 53°33′ 1130
Sanandaj 471 118.8 0.25 35°20′ 47°04′ 1373
Rasht 1353 279.3 0.21 37°12′ 49°39′ 36
Mashhad 257.5 77.4 0.30 36°16′ 59°38′ 999
Khoramabad 515.1 125.6 0.24 33°26′ 48°17′ 1147
Kermanshah 450.8 120.4 0.27 34°21′ 47°09′ 1318
Kerman 158.9 50.2 0.32 30°15′ 56°58′ 1753

significant or not. Associated with parameter values are
standard error of estimation and related t-value which
are used to investigate the statistical significance of the
parameters.

Goodness of fit tests verify the validity of the model
by some tools. In this step, the residuals of the model
are considered to be time-independent and normally
distributed over time. The popular Portmanteau lack of
fit test based on Ljung – Box statistic (Salas et al., 1980)
is written as:

Q∗ = n′(n′ + 2)

L∑

k=1

(n′ − l)−1r2
e (ε̂) (3)

Q∗ is approximately distributed as χ2(L − p − q) and
has k − np degrees of freedom. We have considered
L = 48. If the probability of Q∗ is less than α = 0.01,
there is a strong evidence that the model is inadequate and
if the probability is greater than α = 0.05, it is reasonable
to conclude that the model is adequate. In this study, the
α = 0.05 significant level is used as the significant level
for the model building.

Regionalization: multivariate methods

Multivariate techniques are common methods for clas-
sifying meteorological data such as rainfall. Principal

components and cluster techniques are used in this study
to classify autocorrelation coefficient of rainfall series in
different groups. Let the matrix X (m × k) consist of
autocorrelation coefficients at lags k = 1, . . . , 12 of m
stations. k = 12 is chosen as the autocorrelation; coeffi-
cients of higher lags are not significant or have similar
seasonal fluctuations as the first k = 12. A commonly
used dissimilarity measure is the Euclidean distance (d2

rs)
which is written as follows (Jobson, 1992):

d2
rs =

k∑

j=1

(xrj − xsj )
2 (4)

where the rth and sth rows of the data matrix X is denoted
by (xr1, xr2, . . . , xrk) and (xs1, xs2, . . . , xsk) respectively.
In this study, our matrix consists of 12 lags of ACF of 28
rainfall time series. These 12 autocorrelation coefficients
are selected because the coefficients in higher lags are
similar to them or are not significant at very higher lags.
This means a matrix of 28 columns of stations and 12
rows of autocorrelation coefficients of rainfall series.

The Euclidean distance of dissimilarity is then used
in the cluster techniques. As the variables must not
be correlated with each other, PCA is usually prefixed
(Backhaus et al., 1994). PCA was first applied to reduce
a large data matrix into some important factors (principal
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components). The first principal component is the linear
combination of the original variables that captures as
much of the variation in the original data as possible.
The second component captures the maximum variation
that is uncorrelated with the first component, and so on.
After having decided which autocorrelation coefficient
at which lags are to be used for classification, cluster
analysis based on Ward’s method is applied. To choose
the proper number of the clusters, one can refer to the
total spatial variance for each number of the clusters. The
R-Squared, squared multiple correlation or the decrease
in the proportion of variance accounted for due to joining
two clusters to form the current cluster, is the key to
select the number of the proper clusters. In order to
illustrate these clusters, we apply canonical discriminant
analysis. Canonical discriminant analysis is a dimension-
reduction technique related to PCA and the canonical
correlation. In a canonical discriminant analysis, we
find the linear combinations of the quantitative variables
that provide maximum separation between the classes
or the groups. Two output data sets can be produced:
one containing the canonical coefficients and another
containing the scored canonical variables. The scored
canonical variables output data set can be used to plot
pairs of canonical variables to aid visual interpretation of
the group differences.

RESULTS AND DISCUSSION

Time series modeling

The process of time series modeling begins with the
selection of the preliminary models interpreted from the
characteristics of ACF and PACF functions using SAS
ARIMA procedure (SAS/ETS, 1999). At first look, the
monthly fluctuations show the seasonal behavior of the
temporal pattern of the monthly rainfall due to the sig-
nificant correlation coefficients at lag k = 12. For exam-
ple, the ACF and PACF of the Ahwas, Isfahan and
Ghaemshahr monthly rainfall series are presented in
Figure 3. The parameter estimation of the preliminary
selected models is then applied using the method of maxi-
mum likelihood. For example, the results of the parameter
estimation and the satisfaction of the stationarity and
invertibility conditions for Isfahan stations are presented
in Table II. This model has been derived based on trying
several models with different orders of the parameters. As
all invertibility and stationarity conditions are accepted
for the model, the model residuals were checked for sta-
tionarity and normality using Portmanteau lack of fit test
and normal tests.

The portmanteau lack of fit test and the two nor-
mal tests (Kolmogrov–Smirnov and Anderson–Darling
tests) proved the residuals to be time-independent (sta-
tionarity) and normally distributed. As a result from
the above monthly rainfall time series modeling steps
for Isfahan station, the best model for this station is
ARIMA(1,0,0)(0,1,1)12. Plotting the observed and the
model predicted rainfall time series shows that the model

performs the observed rainfall series very well (Figure 4).
Following the above procedures for all the selected sta-
tions, the best model for each station was estimated and
presented in column 2 of Table III. In columns 3 and 4,
the lag 1 and lag 12 autocorrelation coefficient values are
also shown.

It is clear from Figure 4 that the model predicted
rainfall series have the same seasonal fluctuations with
the observed rainfall series. For better verification of the
selected models and for checking their efficiency, two
criteria are used, the correlation coefficient, R2, between
observed and model predicted rainfall series and the
R2

N –S criterion of Nash and Sutcliffe (1970). It is related
to the sum of the squares of the differences, F, between
the estimated and observed rainfall. This criterion is
defined by

R2
N –S = F° − F

F°
(5)

where F° is the sum of the squares of differences between
the observed rainfall and the mean rainfall. A value
of R2

N –S greater than 90% would normally indicate a
very satisfactory model performance while a value in the
range 80–90% is regarded as an indication of a fairly
good model. Values of R2

N –S in the range 60–80%
generally indicate an unsatisfactory model fit (Shamseldin
and O’Connor, 2001). The correlation coefficients and
R2 criterion of Nash and Sutcliffe are presented in
columns 5 and 6 of Table III, which postulate that
the rainfall predicted by the models fits correctly the
observed values with R2 > 0.78 and R2

N –S > 85% to
the observed rainfall and the fitted ARIMA models are
satisfactory in all stations.

Regional climates: cluster analysis

In the first step, PCA was applied on the autocorrelation
coefficients of the lag k = 1 to the lag k = 12 for
28 stations using SAS software (SAS/STAT, 1999). To
improve the interpretation of the unrotated PCA results,
the principal components are rotated using the orthogonal
VARIMAX rotation. This rotation method is common
where a cluster analysis is to follow PCA because the
PCs are uncorrelated and the assumptions of the cluster
analysis are satisfied (McGregor, 1993).

Table IV lists the VARIMAX-rotated Principal compo-
nents. The first component, which has the largest loadings
for the lags k = 4–8, explains 59% of the total variance
between stations. The second component which has large
loadings for the lags k = 1 and k = 12, explains 21% of
the total variance, while the third component explains
12% of the total variance. The first two factors which
describe 80% of the total between-stations variance can
be called ‘stationarity’ and ‘periodicity’. This is because
the significant autocorrelations at higher lags (higher than
k-3) are the sign of stationarity in the rainfall statistical
characteristics like the mean or variance and the signif-
icant autocorrelation at lag 12 shows the seasonality or
the periodicity in the statistical characteristics of rainfall
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Figure 3. Autocorrelation (a) and partial autocorrelation (b) functions of some selected stations.

Table II. The parameter estimations of model ARIMA(1,0,0)(0,1,1)12 for Isfahan station.

Estimation
method

Type and order
of parameters

Parameter
value

Standard
error

t-value Probability
of t

Invertibility
and stationarity

conditions

ML Seasonal MA(1) 0.92 0.03 25.14 P < 0.0001 Accepted
AR(1) 0.14 0.05 2.74 P < 0.0061

(Salas, 1993). In other words, stationarity and periodicity
are the two main elements by which the temporal char-
acteristics between stations could be explained. The third
factor can be called ‘T-GCM ’ effect. ‘T-GCM ’, refers to
the ‘topographic-general circulation model’ effects on the
temporal behavior of the rainfall. This means that 12%
of the rainfall variations are the effect of the elevation

and the atmospheric circulation patterns. However, fur-
ther investigations are necessary to demonstrate these
effects which are out of the scope of the present study.
As the above three components explain 92% of the total
variance between lags, the 28 × 3 matrix of factor scores
was subjected to the hierarchical clustering based on
the method of Ward’s minimum variance. To choose the
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Figure 4. Time series of observed and model predicted rainfall for Isfahan station.

Table III. The best time series model, efficiency values, autocorrelation coefficients and the groups of the selected stations.

Station (1) Best model (2) Values of
autocorrelation coefficient

R2 (5) R2
N – S (%) (6) Groups (7)

Lag-one (3) Seasonal
(lag-12) (4)

Ahwaz ARIMA(3,0,0) × (0,1,1)12 0.27 0.36 0.92 90.22 3
Arak ARIMA(1,0,0) × (0,1,1)12 0.42 0.44 0.94 90.31 2
Ardabil ARIMA(1,0,0) × (7,1,1)12 0.17 0.2 0.89 86.04 3
Bandarabbas ARIMA(1,1,1)12 0.38 0.33 0.91 90.03 1
Bushehr ARIMA(1,1,1)12 0.35 0.3 0.91 90.25 1
Ghaemshahr ARIMA(0,1,1)12 0.18 0.28 0.90 89.6 1
Gorgan ARIMA(0,1,1)12 0.28 0.32 0.90 89.26 1
Ghazvin ARIMA(0,0,1) × (0,0,1)12 0.44 0.46 0.93 90.8 2
Hamedan ARIMA(8,0,11) × (19,1,1)12 0.47 0.55 0.87 85.09 3
Isfahan ARIMA(1,0,0) × (0,1,1)12 0.48 0.4 0.90 90.01 2
Ilam ARIMA(1,1,1)12 0.25 0.41 0.92 91.01 1
Oroumieh ARIMA(6,0,0) × (0,6,1)12 0.34 0.31 0.89 90.0 3
Ghom ARIMA(1,0,4) × (4,1,1)12 0.33 0.42 0.88 85.78 3
Zahedan ARIMA(1,0,1)12 0.27 0.17 0.94 91.1 1
Zanjan ARIMA(6,0,0) × (0,1,1)12 0.41 0.46 0.91 90.3 3
Yazd ARIMA(1,0,1)12 0.38 0.42 0.89 89.5 1
Yasuj ARIMA(2,0,1) × (0,1,1)12 0.32 0.33 0.90 90.06 2
Tehran ARIMA(1,0,1)12 0.38 0.4 0.91 90.7 1
Tabriz ARIMA(0,0,1) × (1,0,1) 0.29 0.18 0.91 90.54 2
Shiraz ARIMA(1,0,1)12 0.28 0.24 0.92 90.87 1
Shahrecord ARIMA(1,0,1)12 0.23 0.36 0.90 88.6 1
Semnan ARIMA(1,1,1)12 0.2 0.35 0.93 91.5 1
Sanandaj ARIMA(0,1,1)12 0.21 0.24 0.94 92.61 1
Rasht ARIMA(0,1,1)12 0.41 0.46 0.94 93.1 1
Mashad ARIMA(1,0,0) × (1,1,1)12 0.25 0.24 0.89 86.4 2
Khoramabad ARIMA(1,0,1)12 0.53 0.51 0.92 89.74 1
Kermanshah ARIMA(1,0,1)12 0.21 0.29 0.91 90.2 1
Kerman ARIMA(1,1,1)12 0.32 0.34 0.91 90.25 1

proper number of clusters, the R-squared showed that 2,
3, 4 and 5 clusters explain 71, 99.2, 99.6 and 99.8%
of between-group variance, respectively. It is evident
that 3 clusters with 99.2% of variance is the best and
the most proper number of the groups of the temporal
behaviors of rainfall over Iran. The canonical variables
of each group are plotted in Figure 5 using Canonical
Discriminant Analysis (SAS/STAT, 1999). One can see
on Figure 5 a good separation between the three groups,

which clearly indicate the validity of the classification.
The membership of each station to each group has been
presented in column 7 of Table III.

Climate regions: time series model and rainfall temporal
characteristics relationships

The different temporal characteristics of the stations and
the groups can be interpreted as follows. All ACF and
PACF indicate the seasonality of rainfall which means
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Table IV. VARIMAX rotated principal component (PCs) load-
ings of different lags (K = 1–12).

Lags PC1 PC2 PC3

K = 1 −0.411 0.755 0.292
K = 2 −0.577 0.359 0.415
K = 3 0.004 0.073 0.174
K = 4 0.868 −0.323 0.096
K = 5 0.903 −0.197 −0.270
K = 6 0.839 −0.223 −0.358
K = 7 0.890 −0.271 −0.278
K = 8 0.869 −0.213 0.149
K = 9 −0.055 0.068 0.573
K = 10 −0.467 0.406 0.976
K = 11 −0.014 −0.001 −0.085
K = 12 −0.296 0.912 0.022
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Figure 5. Illustration of the spatial separation of the canonical scores.

that the same months are correlated with each other dur-
ing consecutive years. The existence of seasonal moving
average parameters (see Table III, values of MA(Q) �=
0) in the model confirms these seasonal fluctuations in
the rainfall temporal fluctuation. It also indicates the
existence of the seasonal pattern in the atmospheric con-
ditions over Iran. On the other hand, some stations show
nonseasonal moving average (see Table III, values of
MA(q) �= 0) which proves nonseasonal fluctuations in
some stations such as Yasuj, Ghom, Hamedan, Ghazvin
and Tabriz. The existence of autocorrelation parameters
in some models can be interpreted as the persistence of
the climate condition. For example, the persistent condi-
tion and the prevalence of the snow precipitation against
rainfall in most of the humid western and north western
stations, Oroumieh, Zanjan and Hamedan, is the reason
for having a higher AR(p) parameter. It also suggests the
parallel act of different rainfall generating mechanisms
like the large-scale cyclonic conditions with a ‘life span’
lasting about several days or months and the effect of the
elevation variation in microscale (Burlando and Rosso,
1993).

In Table V, one can see that the correlation between
lag-one autocorrelation coefficient and the station ele-
vation or the rainfall coefficient of variation (Cv) is
not strong, while these correlations are significant for
lag-12 (seasonal) autocorrelation coefficient with val-
ues of 0.37 and −0.48 for the station elevation and
Cv, respectively. The correlations between lags 4 and
8 and the elevation are also significant. These correla-
tions imply the effect of the station elevation on the
variation of the temporal behavior of the rainfall in
some stations like Zanjan, Oroumieh and Hamedan. The
low order MA (q) parameter (see Table III) shows a
simple and uniform precipitation generating mechanism
with the uniform and periodic temporal rainfall scal-
ing (Burlando and Rosso, 1993). This pattern can be
seen in the margin of the Caspian Sea and the Persian
Gulf.

Based on the hierarchical cluster analysis of the sea-
sonal autoregressive parameter, we can find three main
types of the rainfall time series models. We call them
simple (group 1), moderate (group 2) and complex
(group 3) groups. The simple group includes the pure
seasonal models in the form of ARIMA(p,d,q)12. The
moderate group has a general form of ARIMA(p,d,q)
× (P,D,Q)12 with a low order of AR(p) and MA(q)
parameters. The third complex group consists of the
same models as the second group but with a higher
order of AR(p) and MA(q) parameters. In other words,
these groups can be defined as characterized by sim-
ple climate conditions with regular fluctuations (group
1), simple and more persistent climate conditions with
more irregularity due to the different rainfall generating
mechanism (group2) and high temporal irregularity due
to the interaction between large and microscale cli-
mate conditions and elevation (group 3). The spa-
tial pattern of these three groups is presented in
Figure 6.

Table V. Correlation matrix between autocorrelation coeffi-
cients (R) at lags k = 1–12 and rainfall properties (mean and

STDEV).

CV Elevation Mean STDEV

R1 −0.29 0.28 0.29 0.35
R2 0.11 0.18 −0.01 0.11
R3 0.02 0.02 0.24 0.27
R4 0.09 −0.43∗ 0.04 −0.04
R5 0.02 −0.17 −0.12 −0.19
R6 −0.01 −0.11 −0.15 −0.23
R7 0.03 −0.17 −0.13 −0.21
R8 0.13 −0.39∗ −0.03 −0.07
R9 0.15 −0.21 0.23 0.29
R10 −0.07 −0.44∗ 0.39∗ 0.48∗∗
R11 −0.15 0.18 −0.03 −0.08
R12 −0.48∗∗ 0.37∗∗ 0.33 0.36

∗ Significant at 95%, ∗∗ Significant at 99%.
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Figure 6. Spatial pattern of climate regions of Iran based on time series modeling.

CONCLUSIONS

Time series modeling of the major cities of Iran was ana-
lyzed in this study. The Box–Jenkins popular ARIMA
model was applied and seemed to fit the monthly rain-
fall time series very well. Different ARIMA models such
as pure seasonal model (ARIMA(P,D,Q)12); multiplica-
tive model, ARIMA(p,d,q) × (P,D,Q)12 with low order
parameters and multiplicative model, ARIMA(p,d,q) ×
(P,D,Q)12 with high order parameters were fitted to the
rainfall series. These models indicate temporal character-
istics of rainfall generating mechanism over Iran very
well. The spatial pattern of these rainfall time series
models was determined using the PCA in order to delin-
eate the temporal rainfall groups and related macroscale
rainfall generating mechanisms over Iran. These macro
mechanisms were divided into three groups with dif-
ferent temporal characteristics such as regular year to
year rainfall fluctuations, rainfall with different gener-
ating mechanisms such as elevation and sea neighbor-
hood and rainfall which is affected by the general atmo-
spheric circulations with both seasonal and nonseasonal
fluctuations.

In other words, these groups are indications of the
effect of the sea neighborhood and the elevation on the
variation in the temporal behavior of the rainfall from
pure fluctuation to stationary conditions, respectively.
The PCA analysis indicates that the autocorrelation coef-
ficients at different lags are good indicators of the tempo-
ral relationship of the rainfall and can result in a suitable
classification of the rainfall regions of Iran. The rain-
fall time series modes fitted to monthly rainfall of the

selected stations can also be used for estimating miss-
ing rainfall values, rainfall forecasting and investigating
future rainfall change due to global climate change. It
would also be appropriate in future studies to investi-
gate the relationship between temporal behavior of rain-
fall time series and El Nino Southern Oscillation effects
such as droughts and floods using multivariate time series
modeling.
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Nomenclature

ACF AutoCorrelation Function
ARIMA AutoRegressive Integrated Moving Aver-

age
AR(p) AutoRegressive parameter of order (p)
B backward shift operator
Cv coefficient of Variation, Cv = Standard

Deviation/ Average
d order of nonseasonal differencing operator
D order of seasonal differencing operator
d2

rs euclidian distance
k lag time of autocorrelation function
L maximum lags of residual autocorrelation

function
MA(q) moving average of parameter (q)
ML maximum likelihood
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n the number of observation
np number of parameters
n′ n − np

m number of stations in matrix X
PACF Partial AutoCorrelation Function
PC Principal Component
PCA Principal Component Analysis
Q∗ Ljung-Box statistic
r2
e (ε̂) correlation function of residuals

s seasonal difference
STDEV standard deviation
VARIMAX variance maximum
Zt observation at time t

Greek Symbols

φ nonseasonal autoregressive parameter
θ nonseasonal moving average parameter
εt residual of the model at time t
� seasonal autoregressive parameter
� seasonal moving average parameter
∇ differencing operator
χ chi-square distribution
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